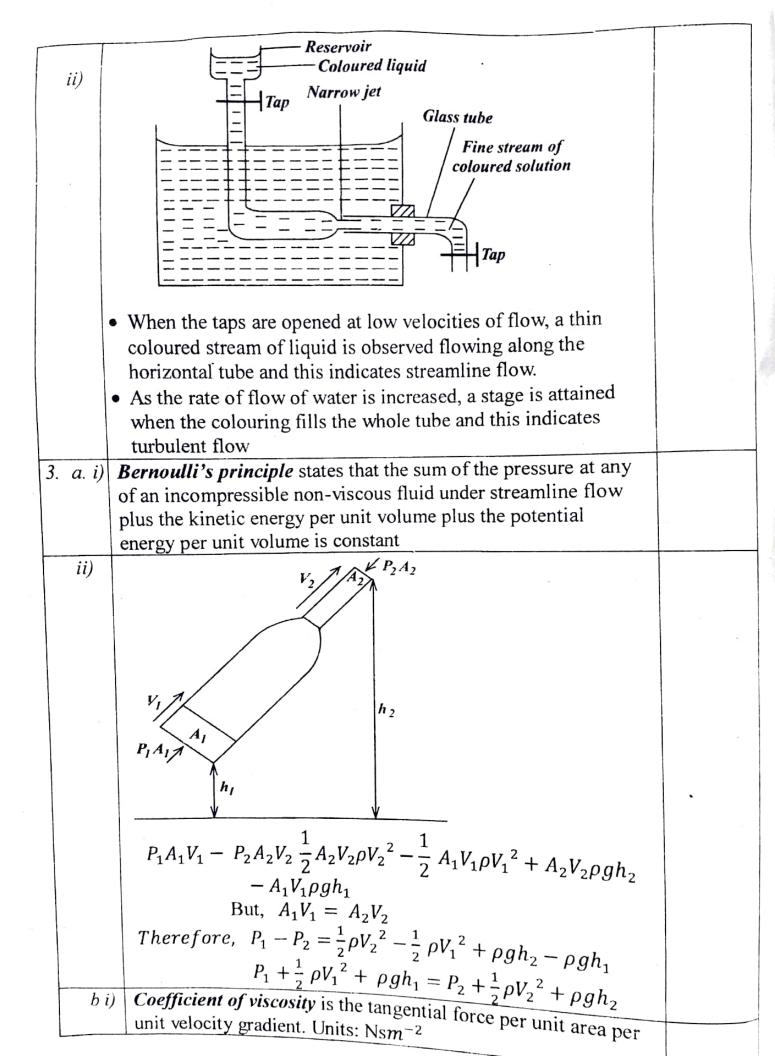
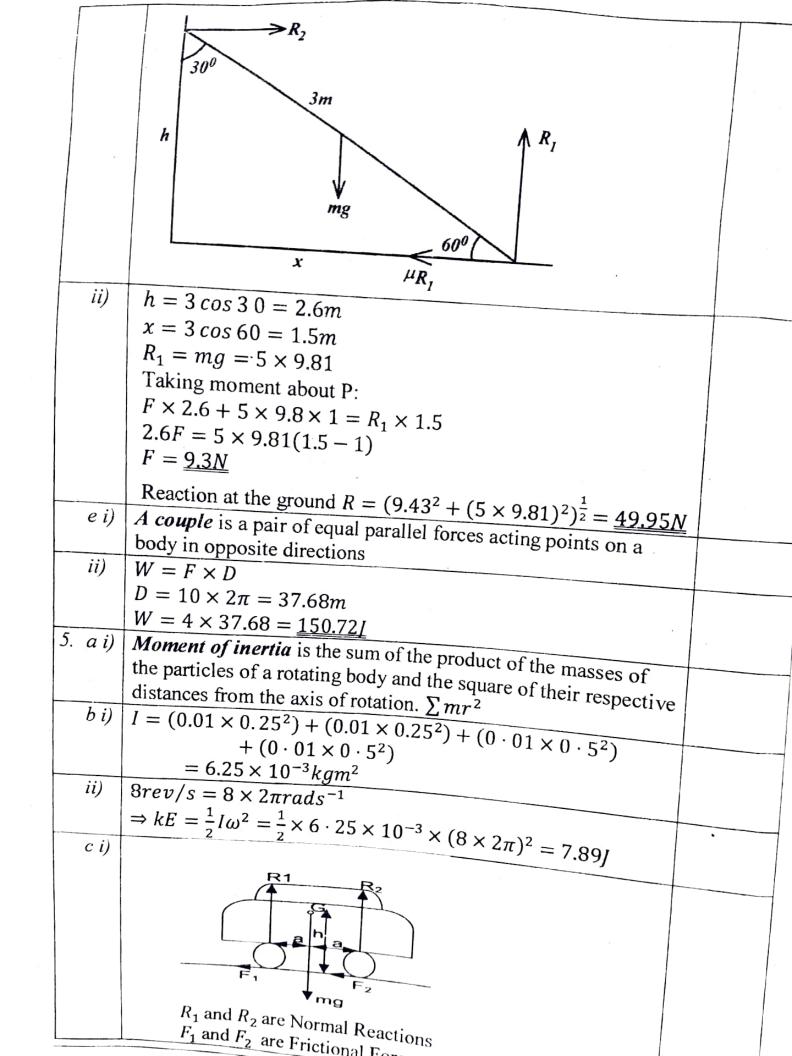
SOLUTIONS FOR THE

A' LEVEL PHYSICS SEMINAR


HELD AT UGANDA MARTYRS S.S NAMUGONGO

ON 5TH OCTOBER 2024


PHYSICS PAPER ONE

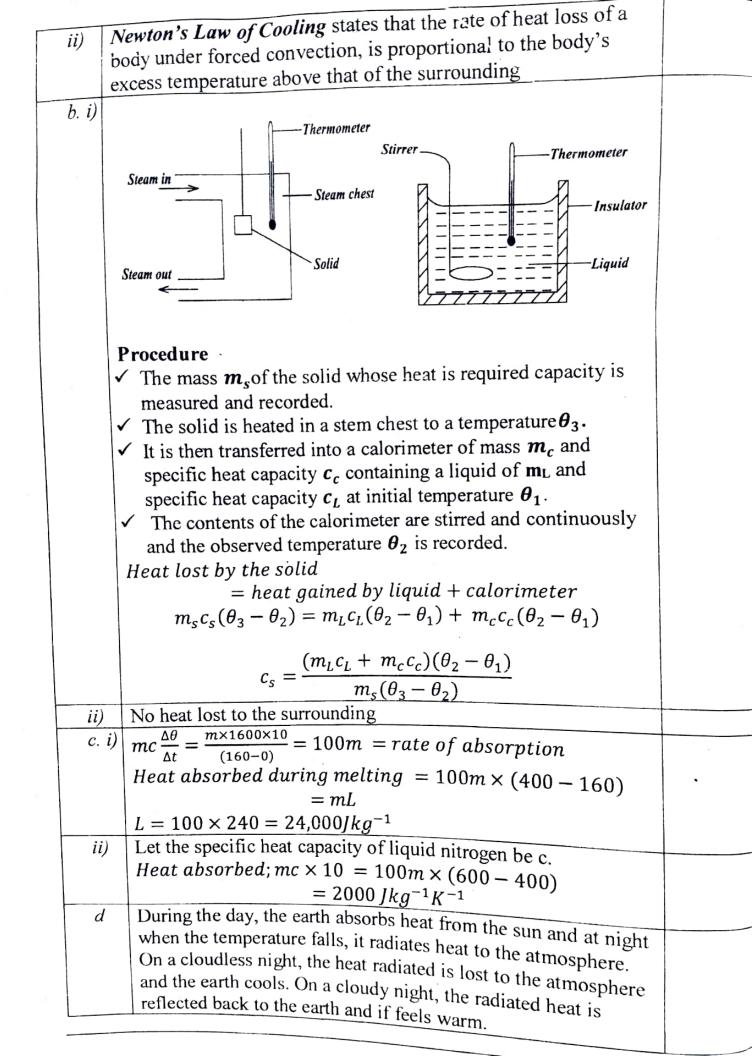
	Ammosok	Remar
Qn.	Approach	
(. a i)	During an <i>elastic collision</i> , kinetic energy is conserved but	
	during an <i>inelastic collision</i> , kinetic energy is not conserved	
ii)	Momentum is the product of mass of a body and its velocity	
	<i>Impulse</i> is the change is the momentum of a body.	
iii)	$F \propto \frac{mv - mu}{t}$, $F = \frac{mv - mu}{t}$, hence $mv - mu = Ft$	-
<i>b i)</i>	If no external force acts on a system of colliding bodies, their	
	total momentum before collision is equal to their total	
	momentum after collision.	
ii)	If two bodies of masses m ₁ and m ₂ moving with respective	
· ·	velocities u_1 and u_2 collide for a time t and move with velocities	
	v ₁ and v ₂ after collision, then from Newton's 3 rd law, body 1	
	exerts a force F_{12} on $body2$ and $body2$ reacts with force F_{21}	
	From Newton's 2 nd law	
	$F_{12} = k \frac{(m_2 v_2 - m_2 u_2)}{t}$ and $F_{21} = k \frac{(m_1 v_1 - m_1 u_1)}{t}$	i.e.
	From 3^{rd} law, $F_{12} = -F_{21}$	
	$k\frac{(m_2v_2 - m_2u_2)}{t} = -k\frac{(m_1v_1 - m_1u_1)}{t}$	
	$m_2 v_2 - m_2 u_2 = -m_1 v_1 + m_1 u_1$	
	$m_2 v_2 + m_1 v_1 = m_1 u_1 + m_2 u_2$	
c i)		
ii)	$u = \sqrt{2 \times 9.81 \times 5} = 9.90 \text{ ms}^{-1}$	-
11)		
	$F = \frac{mv - mu}{t} = \frac{0.5(7.67 + 9.90)}{0.01} = 878.5N$	
d.	Conservative forces are ones for which the work done to move	
	a body through a closed loop is zero, whereas non-conservative	
	forces are ones for which the work done to move a body	
	through a closed loop is not zero	
	e.g. Conservative - Gravitational force, magnetic force, electric	
	force, non-conservative – Friction, Viscous force	
2. a.	Surface tension is the force acting normally per unit length on	-
1	one side of a line drawn in the liquid surface.	
b. i,	0.5	-
	Volume of the big drop	
	4 2 14 × (0.5 × 10=3) 2 4	
	$= 1000 \times \frac{4}{3} \times 3.14 \times (0.5 \times 10^{-3})^3 = \frac{4}{3} \times 3.14 \times R^3$ Radius of big drop = $[1000 \times (0.5 \times 10^{-3})^3]^{\frac{1}{3}} = 5 \times 10^{-3} m$ Surface area of big drop	
	Radius of big drop = $[1000 \times (0.5 \times 10^{-3})^3]^{\frac{1}{3}} = 5 \times 10^{-3} m$	
	Surface area of big drop	
1		1

	$= 1000 \times 4 \times 3.14 \times (5 \times 10^{-3})^2 = 3.14 \times 10^{-4} m^2$ Area of small draps = 1000	
	$1000 \times 4 \times 3.14 \times (0.5 \times 10^{-3})^2$	
	$= 3.14 \times 10^{-3} m^{2}$ Change in Area = $3.14 \times 10^{-3} - 3.14 \times 10^{-4}$	
	$= 2.826 \times 10^{-3} m^2$	
	Energy released = $\gamma \Delta A = 2.826 \times 10^{-3} \times 7.2 \times 10^{-4}$	
	$= 2.035 \times 10^{-6} I$	
ii)	P_0 P_i	
		-
	$ \pi r^2 P_0 + 2(2\pi r)\gamma = \pi r^2 P_i$ $\Rightarrow P_i - P_0 = \frac{4\gamma}{2}$	
	$\Rightarrow P_i - P_0 = \frac{4\gamma}{2}$	
iii)	r	
2	$P_{\theta}\left(\begin{array}{c c} I_{I} \\ \hline \frac{d_{I}}{2} \end{array}\right) P_{I} P_{2} \qquad \begin{array}{c} \underline{d_{2}} \\ \hline \end{array} P_{\theta}$	
	$P_{2} - P_{0} = \frac{4\gamma}{d_{2}/2} = \frac{8\gamma}{d_{2}}, P_{1} - P_{0} = \frac{4\gamma}{d_{1}/2} = \frac{8\gamma}{d_{1}}$ $\frac{4\gamma}{r} = P_{1} - P_{0} = \frac{8\gamma}{d_{1}} - \frac{8\gamma}{d_{2}} = 8\gamma \frac{(d_{2} - d_{1})}{d_{1}d_{2}}$	
	$\frac{4\gamma}{2} = P_1 - P_2 = \frac{8\gamma}{2} - \frac{8\gamma}{2} - \frac{8\gamma}{2} - \frac{9\gamma}{2} = \frac{9\gamma}{2} = \frac{9\gamma}{2} - \frac{9\gamma}{2} = \frac{9\gamma}{2}$	
	r d_1 d_2 d_3	
	$\Rightarrow r = \frac{d_1 d_2}{2\gamma (d_2 - d_1)}$	
	$2\gamma(d_2-d_1)$	
	Streamline flow is the flow of a fluid in which molecules that	
c(i)	are equidistant from the axis of flow move with the same	
-	velocity parallel to the axis of flow while,	
	Turbulent flow is the flow of a fluid in which molecules that	8
	are equidistant from the axis of flow move with different	
	velocities	

111		
ii)	In liquids, viscosity depends on intermolecular forces of	
••••	viscosity reduces.	
iii)	$A_1V_1 = A_2V_2$	
	$10 \times 0.2 = 2.5V_2$	
	$V_2 = 0.8 ms^{-1}$	
1	$P_A - P_B = \frac{1}{2} \rho (0.8^2 - 0.2^2)$	
	$\begin{pmatrix} 1 & 1 & 2 & p(0.5 - 0.2) \\ 1 & 2 & p(0.5 - 0.2) \end{pmatrix}$	
	$= \frac{1}{2} \times 1000 \times (0.8^2 - 0.2^2) = 300Pa$	
c i)	Lamina flow is the flow of a fluid in which layers of fluid that	
	are equidistant from the axis of flow more with the same	
	velocity parallel to the axis of flow.	
5.	Turbulent Flow is the flow of a fluid in which layers of the	
	fluid that are equidistant from the axis of flow move with	
	different velocities.	
ii)	The Filter pump	
	The filter pump has a narrow section in the middle so that water	
	from the tap flows faster here.	
	This causes a drop in pressure near it and air therefore flows in	
	from the side tube to which the vessel is connected. The air and	
	water together are expelled through the bottom of the pump.	
4. a i)	Limiting friction is the maximum friction that exist between	
,	two surfaces in contact just before relative motion starts	
ii)	A	
	5 / 	
	Friction	
	<u> </u>	
	Applied force	
bi	$F = mg \sin \theta + mg \cos \theta$	
	$= 2000 \times 9.81(\sin 20 + 0.2\cos 20) = \underline{10397.8N}$	
	$P = FV = 10397.8 \times 15 = 1.56 \times 10^5 W$	
	• The resultant force on the body is zero.	
c	 The resultant force of the body is zero. The sum of the clockwise moments about any point is equal 	
	to the sum of the anticlockwise moment about the same	
	point	
72		
d i)		

	Ma is the Weight of the G	
ii)	Mg is the Weight of the Car mV^2	
	$F_1 + F_2 = \frac{1}{r} \dots \dots (i)$	
	$F_1 + F_2 = \frac{mV^2}{r} \dots \dots (i)$ $R_1 + R_2 = mg \dots \dots (ii)$	
	$F_1 h + F_2 h + R_1 a = R_2 a \implies R_2 - R_1 = \frac{mV^2 h}{mV^2 h} \cdots (iii)$	
	$F_1 h + F_2 h + R_1 a = R_2 a \Rightarrow R_2 - R_1 = \frac{mV^2 h}{ra} \cdots (iii)$ $(ii) - (iii), mg - \frac{mV^2 h}{a} = 2R_1 = m \left(g - \frac{V^2 h}{ra}\right)$	
	For safety of the car, $\frac{V^2h}{ra} \leq g \Rightarrow V_{\text{max}} = \sqrt{\frac{gra}{h}}$	
,	Where a , is the distance half way between the tyres and h , is the height of the centre of gravity above the ground.	
d.	Racing cars can move faster on banked circular tracks than on	
	level tracks because there is a larger value of Centripetal force	
	since it is provided by both the component of friction and the	19
1	component of normal reaction.	
6. a i)	Planets describe ellipses about the sun as one focus	
	The line joining a planet to the sun sweeps out equal areas in	
	equal time intervals	*
	The square of the period of revolution of the planet round the	
	sun, is proportional to the cube of their mean distance of	
	separation.	
ii)	For any two bodies in the universe, there is a force of attraction	
	between them which is proportional to the product of their	
	masses and inversely proportional to the square of their distance	
	of separation.	
<i>b i)</i>	or separation.	
0.0	1 0 1 - 11 - 11	41
	Surface of the earth	
=	Inside the Above the surface of	
	earth the earth	
	die centi	
	 	
	u l ^E L	
ii)	$\frac{GMm}{r^2} = mg \Rightarrow g = \frac{GM}{r^2}$	
	Effective mass of the Earth $=\frac{4}{3}\pi(R_e-r)^3\rho$	
	$\frac{3}{4} (R - r)^3 \alpha$	
	$\Rightarrow g = G \times \frac{4}{3} \pi \frac{(R_e - r)^3 \rho}{(R_e - r)^2}$	
	$g = \frac{4}{3}G\pi(R_e - r)\rho$	
	3	

Page 7 of 54

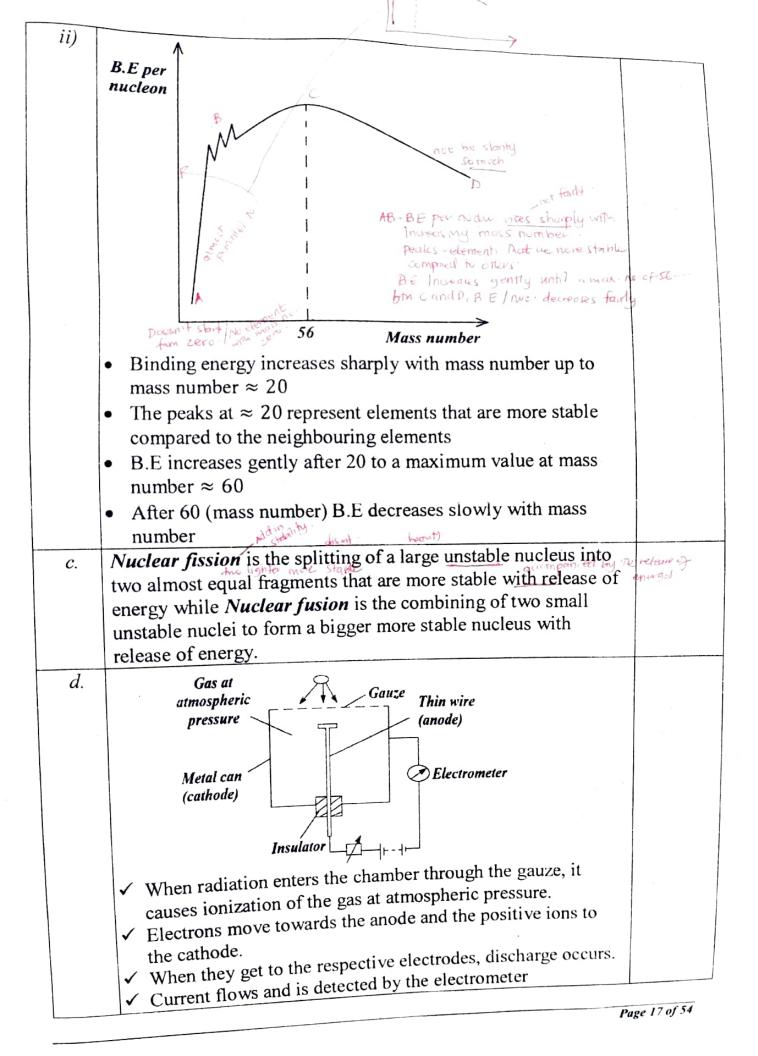

c i)		
	$R_m = 1.53R_e$	
,.	$GMm = 2\pi \qquad 4\pi^2$	
	$\frac{GMm}{R_e^2} = m\omega^2 R_e, but \ \omega = \frac{2\pi}{T_e} \Rightarrow GM = \frac{4\pi^2}{T_e^2} R_e^2$	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Also, $GM = \frac{4\pi^2}{T_m^2} R_m^2 \implies \frac{4\pi^2}{T_e^2} R_e^3 = \frac{4\pi^2}{T_m^2} (1.53 R_e)^2$	
	$\Rightarrow T_m = \sqrt{(1.53^3 T_e^2)} = \sqrt{1.53^3 \times 365^2} = \underline{690.8 days}$	
d i)	Parking orbit is the path of a satellite about the Earth, whose	
	period of revolution is the same as the period of rotation of the	
	Earth about its axis i.e. 24hours	
ii)	Artificial satellites are used for; Navigation, Global	
	communication, Weather forecast, Study of the universe,	
	Scientific research	
e i)	$M.E = \frac{GMm}{2R}$, but $R = 6 \cdot 4 \times 10^6 + 3 \cdot 59 \times 10^7$	
	2R / TO T 3 . 39 X 10 /	
	$= 4 \cdot 23 \times 10^7 m$	
	$\Rightarrow M.E = \frac{6.67 \times 10^7 \times 5.97 \times 10^{24} \times 100}{2 \times 4.23 \times 10^7} = \frac{4 \cdot 71 \times 10^8 I}{2 \times 4.23 \times 10^7}$	
ii)	Satellite will move to an orbit of smaller radius and its value its	
7. a	of kinetic chergy increases.	
7. a	Specific heat capacity is the amount of heat required to raise	
	the temperature of a Ikg mass of a substance by IK . Unit: $JKg^{-1}K^{-1}$	
Ь	A.	
	Constant	
	head water tank	
	Waste Pipe A Battery	
	V	
Induce	Switch K	
Ja	VI CONTRACTOR OF THE PROPERTY	
	The information, T ₂	
	Liquid in Liquid out	
	Thermometer, T ₁	
	Evacuated Liquid collected in	
	glass tube Heating coil	
	• The liquid is allowed to flow through the	
	 The liquid is allowed to flow through the apparatus at a The switch is closed and the 	
	recorded and the current I	
	 The switch is closed and the current I and voltage V are The experiment is left to run. 	
	• The experiment is left to run until a steady state is attached.	
	oralle is attai	

	• The steady state temperatures θ_1 and θ_2 are recorded from the thermometers T_1 and T_2 respectively.	
	the thermometers T_1 and T_2 are recorded from	
	• The mass M, of the liquid collected in time time	1
	• The rheostat is adjusted for new values of current I' and	
	voltage V' .	
	• The rate of flow is adjusted so as to have the same steady	
	temperatures θ_1 and θ_2 . The new mass M' collected in the	
)	same time t is recorded.	
1		
	 The specific heat capacity of the liquid; 	
	Define every symbol oxed $C = \frac{(V'I' - VI)t}{(M' - M)(\theta_2 - \theta_1)}$	
	Define every symbol used $C = \frac{(V'I' - VI)t}{(M' - M)(\theta_2 - \theta_1)}$	
	$(M M)(O_2 O_1)$	
c(i)	$\overline{IV} = mc \left(\theta_2 - \theta_1 \right) + h$	
	$\Rightarrow 35 \times 2 = 4.07 \times 10^{-2} c(29 - 25) + h$	
	t = 70 (0.47 = 1.521c ⁻¹	
	$\frac{h = 70 - 68.47 = 1.53 \text{Js}^{-1}}{From C = \frac{(V'I' - VI)t}{(M' - M)(\theta_2 - \theta_1)}}$	-
ii)	$F_{rom} C = \frac{(V'l'-Vl)t}{}$	
	$\frac{170m \ C}{(M'-M)(\theta_2-\theta_1)}$	
	$C = (35 \times 2 - 26 \times 2)10 = 4.206 \times 10^3 W_{\odot} / V_{\odot} $	
	$C = \frac{(35 \times 2 - 26 \times 2)10}{(1.07 \times 10^{-2})(29 - 25)} = 4.206 \times 10^{3} \text{JKg}^{-1} \text{K}^{-1}$	
	0.035 Lv + 4263 = 79,968 + 3360	
		ļ
4	$Lv = \frac{79065}{1000} = 2.259 \times 10^6 \text{ JKg}^{-1}$	ĺ
1	0.035	
8. a i)	• Isobaric - compression or expansion at constant pressure	
	• Isovolumetric – change in pressure and temperature at	
	constant volume	
ii)	Isobaric: $\frac{V}{T}$ = Constant Isovolumetric: $\frac{P}{T}$ = Constant	
	T	
b. i)	lack	
	P	
	Pressure	
		1
	Y Y	
		
	V 2V Volume	
	$P = 1.01 \times 10^5 Pa$	
::1	$T_{1} = 25^{0}C = 298K, V_{1} = V, P_{1} = 1 \cdot 01 \times 10^{5}Pa$ $T_{2} = 596K, V_{2} = 2V, P_{2} = 1 \cdot 01 \times 10^{5}Pa$ $T_{3} = 596K, V_{4} = 2V, P_{3} = 3.39 \times 10^{4}Pa$	
ii)	$r_1 = \frac{1}{100} $	
	$T_{1}^{1} = 596K, V_{2} = 2V, P_{2} = 1.01 \times 10^{7} \text{ G}$ $T_{2} = 596K, V_{3} = 2V, P_{3} = 3.39 \times 10^{4} Pa$ $T_{3} = 200K, V_{3} = 2V, P_{4} = ??$ $T_{4} = 263.9K, V_{4} = V, P_{4} = ??$	1
	$T_3 = 200K, V_3 - 2V, P_1 = ??$	
	$T_{4} = 263.9K, V_{4} = V_{3}, I_{4} = V_{4}$	1
	$V = 2V \rightarrow T_0 = 2 \times 298 = 596K$	
	$\frac{1}{208} = \frac{7}{72}$	2.054
	$\frac{V}{V} = \frac{2V}{2} \Rightarrow T_2 = 2 \times 2 \Rightarrow T_2 = 2 \Rightarrow$	ige 9 of 54

	$\left \frac{P_2}{T_2} = \frac{P_3}{T_3} \right $, $T_4 V_4^{\gamma - 1} = T_3 V_3^{\gamma - 1}$ and $P_4 V_4^{\gamma} = P_3 V_3^{\gamma}$	
	$\frac{\frac{I_2}{1 \cdot 01 \times 10^5}}{596} = \frac{P_3}{200} \Rightarrow P_3 = 3.39 \times 10^4 Pa$	
	$\frac{1}{596} = \frac{1}{200} \Rightarrow P_3 = 3.39 \times 10^{-5} Pa$	
	$T_4 = \frac{200 \times 2^{0.4} \times V^{0.4}}{V^{0.4}} = 263 \cdot 9K$	
	$T_4 = \frac{1}{V^{0.4}} = 263 \cdot 9K$	
	$P_3V_3^{\gamma} = 3.39 \times 10^4 \times 2^{1.4} \times V^{1.4}$	
12	$P_4 = \frac{P_3 V_3^{\gamma}}{V_4^{\gamma}} = \frac{3.39 \times 10^4 \times 2^{1.4} \times V^{1.4}}{V^{1.4}} = 8.95 \times 10^4 Pa$	
d.i)	Boyle's law states that the pressure of a fixed mass of a gas is	
	inversely proportional to its volume at constant temperature	
ii)	H	
	mm scale Constant temperature bath	-
	Dry air — — — — — — — — — — — — — — — — — — —	
	 Pressure of the dry air, H + h is measured and recorded The volume V is obtained from the mm scale The procedure is repeated by adding more mercury in the open limb 	
	• A graph of pressure against $\frac{1}{V}$ is plotted.	
	, , , , , , , , , , , , , , , , , , ,	
0	• A straight line shows that $P \propto \frac{1}{v}$	
9. a. i)	 ✓ Intermolecular forces of attraction are negligible ✓ The volume of the molecules is negligible compared to the volume of the gas ✓ Molecules are like perfect elastic spheres ✓ The duration of a collision is negligible compared to the time between collision Dalton's law states that the pressure of a mixture of the state of the pressure of a mixture of the pressure of th	•
ii)	Dalton's law states that the	
""	Dalton's law states that the pressure of a mixture of gases that	
	do not chemically react is equal to the sum of the partial pressures of the individual gases.	
iii)	$D = \frac{1}{2} = \frac{1}{Nm} = \frac{3VD}{2}$	
	$P = \frac{1}{3}\rho \overline{c^2} \Rightarrow P = \frac{1}{3} \frac{Nm}{V} \overline{c^2} \Rightarrow N = \frac{3VP}{m\overline{c^2}}$ For a mixture of	
	For a mixture of gases, $N = N_1 + N_2 + N_3$	
	172 1 173	

Vymus-

	$\Rightarrow N = \left(\frac{3VP_1}{m_1\overline{c_1^2}}\right) + \left(\frac{3VP_2}{m_2\overline{c_2^2}}\right) + \left(\frac{3VP_3}{m_3\overline{c_2^2}}\right)$	
	But at the same temperature, $m_1 \overline{c_1^2} = m_1 \overline{c_2^2} = m_1 \overline{c_3^2} = m \overline{c^2}$ $\Rightarrow \frac{m \overline{c^2} N}{3 v} = P_1 + P_2 + P_3 \text{ but } \frac{m \overline{c^2} N}{3 v} = P$	
=	$\Rightarrow \frac{mc}{3v} = P_1 + P_2 + P_3 \text{ but } \frac{mc}{3v} = P$	
=	$\Rightarrow P = P_1 + P_2 + P_3$ merules mere faster.	
b. i)	When the temperature increases, the pressure will increase. This	
	s because the kinetic energy of the gas molecules increases and	
	they collide with the walls of the container with a higher	
	velocity thus a higher rate of change in momentum. Since the	
(Ne)	volume is constant, the molecules will move to the walls in a	
5	shorter time and the number of collisions made per second will	
8	also increase hence a high pressure.	
	Water boils when its S.V.P is equal to the atmospheric pressure.	
1	The atmospheric pressure at the top of a mountain is smaller	
1 1	han that at the bottom of the mountain. Therefore, water and	
1 1	he top of the mountain will boil at a lower S.V.P than at the	
1 1	pottom of the mountain. S.V.P increases with increase in	
	temperature, this implies that lower S.V.P is attained at a lower	
1 1	temperature hence water boils at a lower temperature on top of	
:	a mountain than at the bottom.	
c. i)	For A	
	$\frac{3 \times 10^5 \times 500}{283} = \frac{P_A \times 750}{283}, \qquad P_A = 2 \times 10^5 Pa$	9
	283 , 1 _A = 2 × 10 1 tr	
	For B	
	$\frac{1 \times 10^5 \times 250}{373} = \frac{P_B \times 750}{373}, \qquad P_B = 3 \cdot 3 \times 10^4 Pa$	
	373 373 , TB = 3 3 × 10 Tu	
	Total Pressure $= 2.33 \times 10^{5} Pa$	
ii)	Total Pressure $= 2.33 \times 10^5 Pa$ $PV = nRT \Rightarrow n = \frac{PV}{T}$	
	$n = n_A + n_B \tag{1.4.105} \times 350 \times 10^{-6}$	
	$\left(\frac{3 \times 10^5 \times 500}{8 \cdot 31 \times 283}\right) + \left(\frac{1 \times 10^5 \times 250 \times 10^{-6}}{8 \cdot 31 \times 373}\right)$	
	(8.31×283)	
=	$-\frac{2.33 \times 10^{-6} \times 750 \times 10^{-6}}{}$	
	$8.31 \times T$	
	$\Rightarrow T = 292.7K$	
10.a i)	Cooling correction is a small temperature added to the	
	observed maximum temperature during a heat experiment to account for the amount of heat lost to the surrounding during	
	account for the amount of heat lost to the sufforment during	
	the experiment.	


11	
11.ai	Grid Deflection
	Electron gun Deflecting system Fluorescent screen
	Cathode
	T. A. A.
	A: A: Y-plates X-plates Electron beam
	Electron beam
	E.H.T O Zinc sulphide
	Graphite coating
	✓ The filament heats the cathode to emit electrons by
	thermionic emission.
	✓ The anodes accelerate the electrons and focus them into a fine beam.
	, control of the second of the
	✓ X-plates deflect the electrons horizontally.
	✓ Y-plates deflect the electrons vertically.
	✓ The screen displays the beam formation.
	✓ The grid controls the number of electrons striking the screen
	per second and hence controls the brightness of the spot
**\	formed on the screen.
ii)	$\frac{V_0}{\sqrt{2}} = 7.072 \rightarrow V_0 = 10.001 V$
	$\sqrt{2}$
	$V_0 \propto \frac{L}{2} = 2cm \rightarrow Y - sensitivity = \frac{10}{2}$
	$Y - sensitivity = 5.0Vcm^{-1}$
b. i)	$V_a = 3,000 V$
	B = 0.6T
	$m = 6.64 \times 10^{-27} kg$
	$qV = \frac{1}{2}mu^2, u = \sqrt{\frac{2qV}{m}} = \left(\frac{2\times(3.2\times10^{-19})\times3,000}{6.64\times10^{-27}}\right)^{\frac{1}{2}}$
	$qv = \frac{1}{2}mu^{-1}, u - \sqrt{\frac{1}{m}} - (\frac{1}{6.64 \times 10^{-27}})$
	$=5.38 \times 10^5 ms^{-1}$
ii)	$Bqu = \frac{mu^2}{r} \Rightarrow r = \frac{mu}{Bq} = \frac{6.64 \times 10^{-27} \times 5.38 \times 10^5}{0.6 \times 3.2 \times 10^{-19}}$
	$= 1.82 \times 10^{-2} m$
iii)	$Eq = Bqu \Rightarrow E = Bu = 0.6 \times 5.38 \times 10^5$
	$= 3.23 \times 10^5 V cm^{-1}$
e.	Cathode rays y-rays
	✓ Carry a negative ✓ Have no charge
	charge
	✓ Less penetrative ✓ Highly penetrative
	✓ Fast moving electrons ✓ Electromagnetic radiations Page 13 of 54

	✓ Slower ✓ Faster	
12.a i)	A mole is the amount of substance that contains	
	6.02×10^{23} elementary units	
ii)	Faraday constant is the amount of charge required to liberate	
	one mole of singly ionized ions in electrolysis	
iii)	Avogadro's number is the number of particles in one mole	
b	Constant temperature bath	
a a a	microscope M A Clause the mean, not down X-ray tube	
	 Oil is sprayed and fine oil drops fall through a small hole in plate A. A particular drop is observed and its terminal velocity V₀ measured by timing its fall through a measured distance using the microscope. Therefore, ⁴/₃πr³ρ_{oil}g = ⁴/₃πr³ρ_{air}g + 6πηrV₀	
c. i)	$10^{-19}C$	

 $\theta = (31 + \frac{36}{60}) = 31.6^{\circ}$

	T. T	
	$\frac{V_H}{1.066} = \tan 31.6^0 \implies V_H = 1.066 \tan 31.6^0 = 0.656 cm s^{-1}$	
ii)	$\frac{1.000 \tan 31.6^{\circ} = 0.656 cm s^{-1}}{3000}$	
	$Eq = 6\pi\eta r V_o, E = \frac{3000}{0.005} = 6 \times 10^5 V m^{-1}$	
	0.005 $6 \times 3.14 \times 1.816 \times 10^{-5} \times 1 \times 10^{-5} \times 0.656 \times 10^{-2}$	
	$q = \frac{6 \times 3.14 \times 1.816 \times 10^{-5} \times 1 \times 10^{-5} \times 0.656 \times 10^{-2}}{6 \times 10^{5}} = \frac{3.741 \times 10^{-17} C}{4}$	
iii)	$\frac{4}{3}\pi r^3(\rho_{oil}-\rho_{air})g$	
	$= 6 \times 3.14 \times 1.816 \times 10^{-5} \times 1 \times 10^{-5}$	
	$\times 1.066 \times 10^{-2}$	
	$\frac{4}{3} \times 3.14 \times (1 \times 10^{-5})^3 \times 9.81(880 - \rho_{air}) = 3.647 \times 10^{-11}$	
	$880 - \rho_{air} = 888$	
	$\rho_{air} = -8kam^{-3}$	
d	-13.6	
	$\rho_{air} = -8kgm^{-3} \text{ error}$ $E_1 = 13.6eV, E_3 = \frac{-13.6}{3^2} = -1.51eV$	
	$E_3 - E_1 = -1.51 + 13.6 = 12.09eV$	
	$hf = 12.09 \times 1.6 \times 10^{-19} = 1.9344 \times 10^{-18}$	
9		
	$f = \frac{1.9344 \times 10^{-18}}{6.6 \times 10^{-34}} = 2.93 \times 10^{15} Hz$	
13.a	✓ For every metal surface, there is a minimum frequency of the	
	incident radiation below which photoelectric emission will	
	not take place.	
	✓ There is no detectable time lag between irradiation of the	
	metal and emission of electrons.	
	✓ The kinetic energy of emitted electrons ranges from zero to a	
	definite maximum value which is proportional to the	
	frequency of the incident radiation.	
	✓ The number of electrons emitted per second (photo current)	
	is proportional to the intensity of the incident radiation for a	
,	given frequency.	
<i>b</i> .	Ultra violet zinc zinc	
	Gold leaf electroscope	
	• When U.V radiation is incident on the clean zinc plate, the	
	negatively charged GLE collapses	
	at a attending stops when Ultra Violet radiation is blocked	
	• The collapsing stops when order violet radiation is blocked.	

	The last all harmons the six 14 mits electrons and	
	• The leaf collapses because the zinc plate emits electrons and negative charge is lost from the GLE	
c_i		
0,	Work function $\phi_0 = \frac{hC}{\lambda} = 4 \times 1.6 \times 10^{-19} J$	
	$\lambda = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{2.004 \times 10^{-7}}$	
	$4 \times 1.6 \times 10^{-19} = 3.094 \times 10^{-19}$	
ii)	$\lambda = \frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{4 \times 1.6 \times 10^{-19}} = 3.094 \times 10^{-7} m$ $hf = \phi + \frac{1}{2} m v^{2} \Rightarrow \frac{1}{2} m v^{2} = \frac{hC}{\lambda} - \phi$	
	$6.6 \times 10^{-34} \times 3 \times 10^{8}$	
	$= \frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{0.2 \times 10^{-6}} - 6.4 \times 10^{-19}$	
	$= 3.5 \times 10^{-19}$	
	$V = \sqrt{\frac{2 \times 3.5 \times 10^{-19}}{9.11 \times 10^{-31}}} = 8.77 \times 10^5 ms^{-1}$	
d. i)	Mass defect of the nucleus is the difference between the mass of	
	the nucleus and the sum of the masses of its individual puoleges	
ii)	Wost of the alpha particles went through the gold foil	
	undeflected because most of the space of an atom is empty	
	space.	
	Some alpha particles were deflected through angles less than	
	y implying that the positive charge of the at-	
	concentrated at the centre of the atom in the	
	Vol y 16W albita Darlicles Were deflected 41	
	by carri than 70 and the first of the constant	
iii)	and its contectifiated at the published	
,	Energy = $\frac{Q_1 Q_2}{4\pi \varepsilon_0 r} = \frac{1.6 \times 10^{-19} \times 79 \times 1.6 \times 10^{-19} \times 9 \times 10^9}{1.6 \times 10^{-19} \times 9 \times 10^9}$	
	$= 5 \times 10^{6} \times 1.6 \times 10^{-19} $	
	$r = \frac{1.6 \times 10^{-19} \times 79 \times 1.6 \times 10^{-19} \times 9 \times 10^{9}}{5 \times 10^{6} \times 1.6 \times 10^{-19}} = \frac{2.2752 \times 10^{-14}}{10^{-14}}$ Rinding From Fig. 1.6 × 1.6 × 10 × 10 × 10 × 10 × 10 × 10 × 10 × 1	
4.a i)	Dinaing Energy is the minimum	
	individual nucleons combine to form a nucleus	b.
	and percent d	werens"

e. i) Half-life is the time taken for half the number of atoms (nuclei) in a radioactive sample to decay

Decay constant is the ratio of number of nuclei disintegrating per second to the number of active nuclei in the sample.

ii) $N_0 = \frac{2}{222} \times 6.02 \times 10^{23} = 5 \cdot 42 \times 10^{21} atoms$ Spherical Area on which radiation falls = $4 \times 3 \cdot 14 \times 20^2$ $= 5024cm^2$ $\frac{A_0}{5024} = \frac{85}{10} \Rightarrow A_0 = 42704Bq$ $A_0 = \lambda N_0 \Rightarrow \lambda = \frac{42704}{5 \cdot 42 \times 10^{21}} = \frac{7 \cdot 87 \times 10^{-18}}{5 \cdot 42 \times 10^{21}}$ $t_1 = \frac{\ln 2}{\lambda} = 8 \cdot 8 \times 10^{16} \text{s}$

PHYSICS PAPER TWO

	THISICS PAPER TWO			
1)(i)	Chromatic aberration is a defect in lenses which occurs when the constituent colours of white light are broadless.	Remarks		
	constituent colours of white light and leaves which occurs when the	The state of the s		
	constituent colours of white light are brought at different foci instead of one focus leading to the production of coloured images. This is so because different colours have different as for the colours have di			
	because different colours have different refractive indices with the red			
	Six being deviated least and violet the most			
ii)	Chromatic aberration is corrected by placing a suitable diverging lens			
	besides a converging lens to form a combination called <i>achromatic</i>			
	doublet. This recombines the colours of white light after refraction			
	through the lens combination as illustrated in the diagram below;			
]	Beam of			
	white light			
1				
	$\backslash / / / F$			
(i)	Refractive index of a material is the ratio of sine of angle of incidence			
	to the sine of the angle of refraction for a ray of light travelling from a			
	vacuum/air to a material.			
	OR it is the ratio of speed of light in air (vacuum) to speed of light in a			
	material.			
(ii)	Consider a monochromatic ray of light incident on a glass block of			
	refractive index, n at an angle of incidence, i . On striking the glass			
12	block, it undergoes refraction through an angle, r as shown in the			
	figure below			
	io			
	*			
	· \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
	d			
	$\underline{\underline{\psi}}$			
	Consider triangle OAB			
	Consider triangle OAD			

$$cos r = \frac{t}{OB}$$

$$OB = \frac{t}{cos r} - - - - - (i)$$

$$Consider triangle OBC$$

$$sin \alpha = \frac{d}{OB}$$

$$OB = \frac{d}{\sin \alpha} - - - - (ii)$$

$$Considering (i) and (ii)$$

$$d = \frac{t \sin \alpha}{\cos r} - - - - - (*)$$

$$At point O$$

$$i = r + \alpha \Rightarrow \alpha = i - r$$

$$sin \alpha = sin(i - r) = sin i cos r - cos i sin r - - - - (iii)$$

$$But sin^{2} r + cos^{2} r = 1$$

$$\Rightarrow cos r = \sqrt{1 - sin^{2}} r - - - - - (iv)$$

$$Substitute(iii) and (iv) in (*)$$

$$d = \frac{t(sin i cos r - cos i sin r)}{\sqrt{1 - sin^{2}} r} - - - - - (**)$$

$$Also, applying snell's law at O$$

$$n_{a} sin i = n sin r$$

$$\Rightarrow sin r = \frac{sin i}{n} - - - - (v)$$

$$Substitute (iv) and (v) into (**)$$

$$d = \frac{t sin i}{n} \left(\sqrt{1 - \left(\frac{\sin i}{n}\right)^{2}} \right) sin i - \frac{\sin i}{n} cos i$$

$$d = \frac{t sin i}{n} \left(\sqrt{n^{2} - sin^{2} i - cos i} \right)$$

$$d = t \left(1 - \frac{cos i}{\sqrt{n^{2} - sin^{2} i}} \right) sin i$$

(c) For red
$$\frac{1}{f_R} = (n_R - 1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$

$$\frac{1}{f_R} = (1 \cdot 514 - 1) \left(\frac{1}{30} + \frac{1}{20} \right)$$

$$\frac{1}{f_R} = 0 \cdot 514 \left(\frac{1}{30} + \frac{1}{20} \right)$$

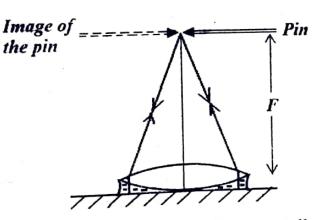
$$f_R = 23.35cm$$
For blue
$$\frac{1}{f_B} = (n_B - 1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$

$$\frac{1}{f_B} = (1 \cdot 524 - 1) \left(\frac{1}{30} + \frac{1}{20} \right)$$

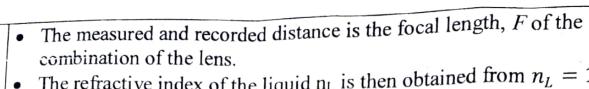
$$\frac{1}{f_B} = 0 \cdot 524 \left(\frac{1}{30} + \frac{1}{20} \right)$$

$$f_R = 22.9cm$$

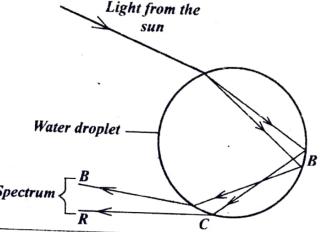
The separation, f between the foci of red and blue is;

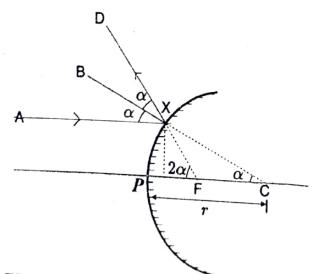

$$f = f_R - f_B$$

$$f = 23 \cdot 35 - 22 \cdot 9$$


$$= 0 \cdot 45cm$$

(d)

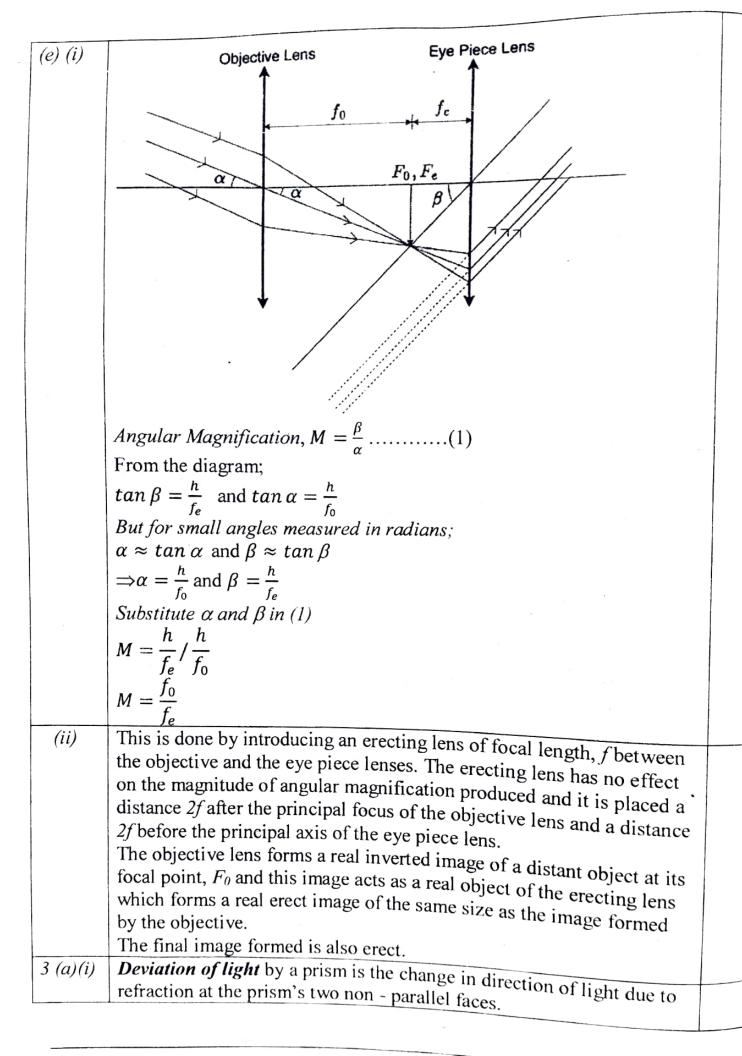

- An object pin is clamped horizontally with its tip along the axis and moved up and down until it coincides with its own image.
- The distance PC is measured and recorded.
- The measured and recorded distance is the focal length f_l of the convex lens.
- A small amount of a liquid whose refractive index, n_L is to be determined is poured on the plane mirror.
- A convex lens is then placed on top of the liquid.
- An object pin is again clamped horizontally and moved up and down until it coincides with its own image. The distance P^{l} C^{l} is measured and recorded.

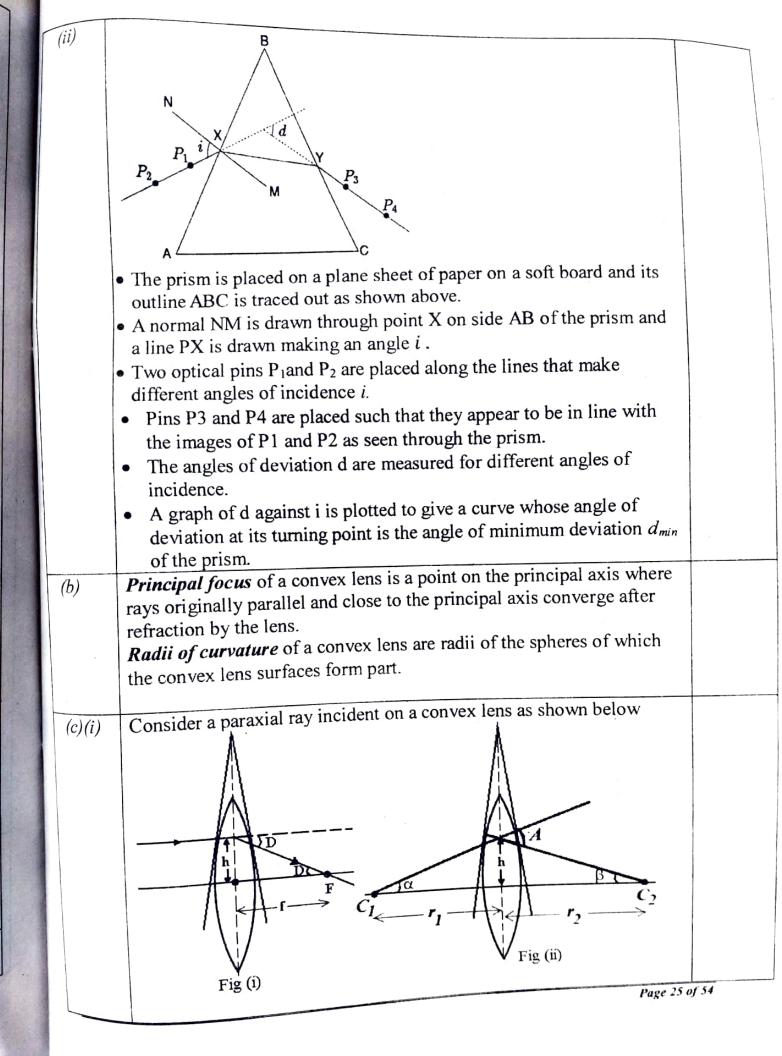

The refractive index of the liquid n_L is then obtained from $n_L = 1 + \frac{1}{2}$ $\frac{r}{f_2}$, where r is the radius of curvature of the biconvex liquid surface and f_2 is the focal length of the lens.

 f_2 is obtained from the expression $\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2}$

When white light is incident on a rain drop, it is refracted and (e) dispersed. The refracted light is reflected at B and emerges at C. The light viewed is a spectrum of colours.

- Principal focus of a convex mirror is a point on the principal axis 2(a)(i)where rays parallel and close to the principal axis appear to diverge from after reflection by the mirror.
 - Consider a ray AX parallel and close to the principal axis incident onto (ii)

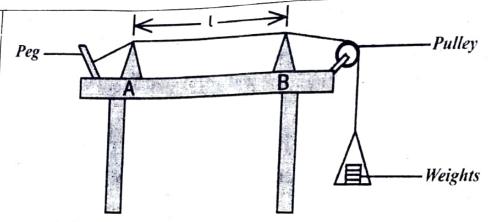

FP = Focal length (f)


If C is the Centre of curvature, then CP is the radius of curvature of the

From the diagram;

 $\leq AXB = \leq BXD = \alpha$ (Law of reflection)

	$< AXB = < XCP = \alpha \text{ (alternate angles)}$ $FC = FX \text{ (isosceles triangles)}$		
	FC = FX (isosceles triangle FXC)		
	For X very close to P, $FX \approx FP$		
	Therefore, $CF = FP$		
	2FP = CP = r		
	r = 2f		
<i>(b)</i>	V		
100	When a lamp is placed at the principal focus of a parabolic mirror, all		
	and far from this lamp that strike the mirror at points close to and far from	1	
25	the principle axis will be reflected parallel to the principle axis and the		
	intensity of the reflected beam remains practically undiminished as the		
	distance from the mirror increases unlike for a concave mirror where		
	rays from a lamp at its focus is reflected at different directions		
	therefore the intensity of the reflected beam diminishes as the distance		
	from the mirror increases.		
12	Therefore, parabolic mirrors instead of concave mirrors are used as		
(-)	reflectors in search lights.		
(c)	Magnifying Power is the ratio of the angle subtended by the final		
	image at the eye when using an optical instrument to the angle		
	subtended by the object at the eye when the object is at the near point.		
-	Resolving Power is the ability of an optical instrument to produce		
(1) (1)	separate images of close objects.		
(d) (i)	Given $f_o = 20mm$, $f_e = 50mm$		
	Lens separation, d = 220cm		
	$d = V_0 + f_e$		
	$220 = V_0 + 50$		
	$V_0 = 170mm$		
	Action of the objective		
	$\frac{1}{1} = \frac{1}{1} + \frac{1}{1}$		
	$\frac{\overline{f_0}}{1} - \frac{\overline{U_0}}{1} + \frac{V_0}{1}$		
	$1 - \frac{1}{1} + \frac{1}{1}$		
	$\frac{1}{20} - \frac{1}{U_0} + 170$		
	1 1 1		
	$\frac{1}{U_0} = \frac{1}{20} - \frac{1}{170}$		
	$U_0 = 22.67mm$		
(ii)	$D(V_0)$		
(11)	$M = \frac{1}{f_0} \left(\frac{1}{f_0} - 1 \right)$		
)e 70		
	$M = \frac{250}{50} \left(\frac{170}{20} - 1 \right)$		
	$M = \frac{1}{50} \left(\frac{1}{20} \right)^{-1}$		
	M = 37.5		


	From the Fig. (i) above;	
	$ tan D = \frac{h}{f} $	
	But for small angles in radians;	
	$\tan D \approx D$	
9)	$\Rightarrow D = \frac{h}{f} \dots \dots$	
	Consider normals at points Q and R going through centres of curvatu	ire
	C_1 and C_2 respectively as shown <i>Fig.(ii)</i> .	
	The normal meet the tangents to the lens surfaces at points P and Q	
	respectively.	
	From the diagram;	
	$\alpha + \beta = A \dots \dots \dots \dots \dots (2)$	
	Also	
	$\tan \alpha = \frac{h}{r_1}$ and $\tan \beta = \frac{h}{r_2}$	
	But for small angles in radians;	
	$\tan \alpha \approx \alpha$ and	
	$\tan \beta \approx \beta$	
	$\Rightarrow \alpha = \frac{h}{r_1} \text{ and } \beta = \frac{h}{r_2} \dots \dots \dots \dots (*)$	
	$\Rightarrow \alpha = \frac{r_1}{r_1} \text{ and } \beta = \frac{r_2}{r_2} \dots \dots$	
	Substituting (*) in 2 gives;	
	$\frac{h}{r_1} + \frac{h}{r_2} = A \dots \dots$	
	$r_1 \cdot r_2 = A \dots \dots$	
	For a prism of small refracting angle, A.	
	d = (n-1)A	
	From (1)	
	$\Rightarrow \frac{h}{f} = (n-1)A \dots \dots \dots \dots (**)$	
	Equation 3 and (**) give;	
	h = (h + h)	
	$\frac{h}{f} = (n-1)\left(\frac{h}{r_1} + \frac{h}{r_2}\right)$	
	$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$	
	$\frac{1}{f} = (n-1)\left(\frac{1}{r_1} + \frac{1}{r_2}\right)$	
(ii)	Consider the liquid lens	
	$\frac{1}{f_l} = (n_l - 1)\left(\frac{1}{r_1} + \frac{1}{r_2}\right)$	
	$\left \frac{f_l}{r_1} \right = \left \frac{r_1}{r_2} \right = \left \frac{r_1}{r_2} \right $	
	$\frac{1}{f_l} = (1.4 - 1)\left(-\frac{1}{23} + \frac{1}{m}\right)$	
	$f_1 = -57.5cm$ $23 + \frac{1}{\infty}$	
	For the combination	
	- smortation	

	$\frac{1}{f} = \frac{1}{f_l} + \frac{1}{f_g}$ $\frac{1}{37.3} = \frac{1}{-57.5} + \frac{1}{f_g}$			
	$\frac{1}{f_g} = \frac{1}{37.3} + \frac{1}{57.5}$ $f_g = 22.62cm$ Consider the glass lens $\frac{1}{f_g} = (n_g - 1)\left(\frac{1}{r_1} + \frac{1}{r_2}\right)$ $\frac{1}{22.62} = (n_g - 1)\left(\frac{1}{23} + \frac{1}{23}\right)$			
	$n_g - 1 = 0.51$ $n_g = 1.51$, ,	
(d)(i)	Spherical aberration is a defect produced in both lenses and spherical mirrors. It occurs when rays which are parallel and far from the principal axis fail to converge a single focal point but instead converge at different focal points which results into a blurred and distorted final image.			
(ii)	 Prisms don't tarnish or deteriorate as plane mirrors do because plane mirrors lose the silvering surface with time. Prisms form brighter images than plane mirrors. This is because mirrors absorb more of the incident light and produce fainter images. Prisms produce clear images than plane mirrors. This is because plane mirrors produce blurred images due to the formation of multiple images. 			
4 (a)(i)	Progressive waves Transfer energy from one end to another along the medium. The amplitude of vibration of the particles is constant. They consist of crests and troughs/ consist of compressions	Stationary waves Doesn't transfer energy along the medium. The amplitude of vibration of particles varies from place to place. Consist of nodes and antinodes.		
	and rarefactions.			

	The phase of vibration varies from point to point along the wave profile.	The phase of vibration of particles is constant between nodes.
(ii)	 They have constant amplitude They move with constant speed They have constant frequency They transfer energy along the p 	
	The transfer of sound energy is post the next layer of molecules in the at that of propagation of the sound wa motion.	sible when vibrating molecules hit tmosphere in a direction parallel to ve. Thus, a longitudinal wave
<i>(b)</i>	Sounding tuning fork	
	Resonance tube	
	 The tap is opened and water is all sound is heard. The tap is immediately closed and measured and recorded. 	the length, l of the air column is
	• A graph of l against $\frac{1}{f}$ is plotted a	and the intercept. Con the
(c)	• The end correction of the tube, e Given: $l = 0 \cdot 4m$, $f_n = 960Hz$, $v = f_n = \frac{nv}{4l}$ $960 = \frac{n \times 330}{4 \times 0.4}$ $n = 4.65$ $n \approx 5$ The air column is vibration	
	n ≈ 3 The air column is vibrating producin	ig the 2nd

(d) (i)	Doppler effect is the
	Doppler effect is the apparent change in the frequency of a wave due to relative motion between the source and the observer. Beats are a periodic rise of the first state of the control
1	Beats are a periodic rise and fall in the intensity of sound heard when two notes of nearly equal frequencies but similar amplitudes are sounded together.
	sounded together.
(ii)	 A spectral photograph of an arc or spark of light from an element known to be in the star is taken in a laboratory and its wavelength, λ is recorded.
	• A spectral photograph of the star is taken and the corresponding wavelength, λ^1 is noted.
	• Velocity of the star is calculated from $u_s = \frac{c \lambda^1 - \lambda }{\lambda}$. Where c is the
	speed of light in air/vacuum
(e)	Given: $\frac{f_1'}{f_2^3} = \frac{5}{4}$
	Case 1
	$f_1^1 = \left(\frac{v}{v - u_s}\right) f$
	$f_1^1 = \left(\frac{v}{v - u_s}\right) f$ $f_1^1 = \left(\frac{340}{340 - u_s}\right) f (i)$
	Case 2
	$f_2' = \left(\frac{v}{v + u_S}\right) f$ $f_2' = \left(\frac{340}{340 + u}\right) f (ii)$
,	$f_2' = \left(\frac{340}{340 + u}\right)f (ii)$
	$\frac{f_1'}{f_2^1} = \frac{5}{4} = \frac{\left(\frac{340}{340 - u_s}\right)}{\left(\frac{340}{340 + u}\right)}$ $(340 + u_s) = \frac{5}{4}(340 - u_s)$
5), 5: (a)	$\frac{f_2^1}{f_2^1} = \frac{1}{4} = \frac{340}{\left(\frac{340+u}{340+u}\right)}$
	$(340 + u_s) = \frac{5}{4}(340 - u_s)$
	$9u_s$ 340
	$\frac{9u_s}{4} = \frac{340}{4}$
	$U_s = 37 \cdot 8ms^{-1}$
5(a)(i)	A tone is a sound with a regular frequency produced by a musical
(ii)	A harmonic is a note whose frequency is an integral multiple of the
(11)	c 1 Leaguency
(iii)	trequency higher than the fundamental
18,119	An overtone is a note with a frequency frequency produced along with the fundamental note.

(b) (i)

- A tuning fork of low frequency is sounded and brought near the wire.
- The wire is plucked and the bridge *B* is moved towards *A* until a loud sound is heard.
- The frequency f of the fork is recorded.
- Keeping the length, *l* and mass of the pan constant, a tuning fork of frequency 2*f* is sounded and brought near the wire and plucked. A loud sound is heard.
- Therefore a stretched wire plucked in the middle vibrates in more than one mode simultaneously.

(ii)

Given: $l = 0 \cdot 3m$, $m = 5g = 5 \times 10^{-3} kg$, T = 170 NFor a stretched string vibrating at its third harmonic

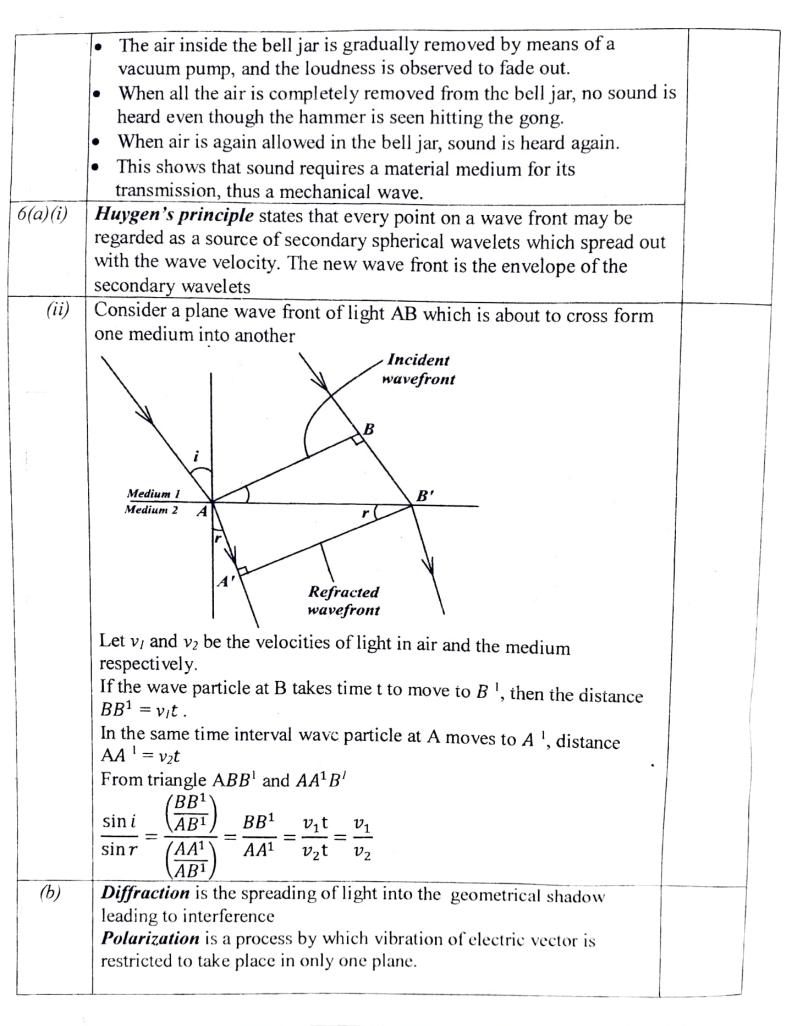
$$f_3 = 3f_1 = \frac{3}{2l} \sqrt{\frac{T}{\mu}} - - - - - - - - (i)$$

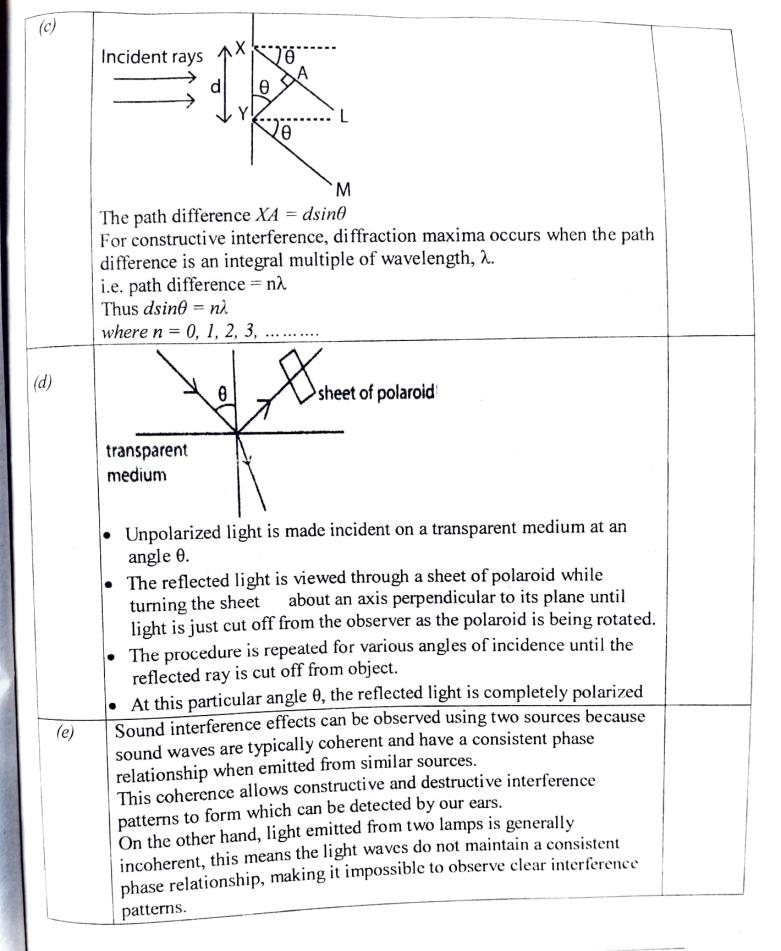
For an open piper vibrating at it fundamental note;

$$f_1 = \frac{v}{2L} - - - - - - - (ii)$$

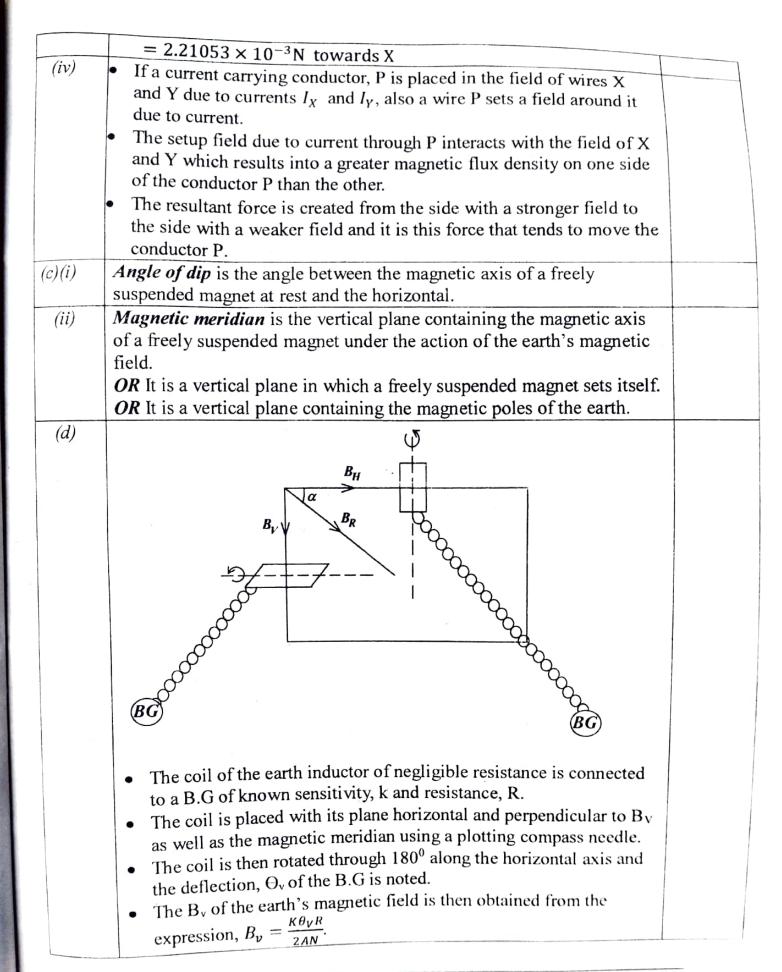
$$But (i) = (ii)$$

$$\frac{3}{2l}\sqrt{\frac{T}{\mu}} = \frac{v}{2L}$$


$$\frac{3}{2 \times 0.3} \sqrt{\frac{170 \times 0.3}{5 \times 10^{-3}}} = \frac{340}{2L}$$


L = 0.3367m

(c) (i)


When two notes of nearly equal frequencies but similar amplitudes are sounded together, they superpose. When they meet while in phase, reinforcement takes place and a loud sound is heard. When they meet while completely out of phase, cancelation occurs and a soft sound or no sound is heard. That happens alternately causing a periodic rise and fall in the intensity of sound heard, which leads to formation of beats.

(ii)		Case 1			
		$f_1^1 = \left(\frac{v - u_o}{v}\right) f(i)$			
	1	Case 2			
		$f_2' = \left(\frac{v + u_o}{v}\right) f(ii)$			
	1				
		$f_2' - f_1^1 = 5$			
	1	$J_2 - J_1 = 3$			
		$(v + u_0)$ $(v - u_0)$			
		$\left(\left(\frac{v+u_o}{v}\right) - \left(\frac{v-u_o}{v}\right)\right)f = 5$			
		$2fu_o$			
		$\frac{2fu_o}{v} = 5$ $\frac{2 \times 425u_o}{340} = 5$			
		$\frac{2 \times 425u_o}{} = 5$			
		$u_o = 2 ms^{-1}$			
(d) (Light manas		
(a) ("	Sound waves	Light waves They are transverse in nature		
		They are longitudinal in nature They are mechanical waves	They are electromagnetic waves		
			They travel at very high speed		
		They travel at relatively low speed	They have at very mgs space		
		They have relatively longer	They have very short		
		wavelength	wavelength		
-	(ii)	To elect	ric		
	(ii) To electric source				
		Ballion			
	Bell jar Electric bell				
		Electric bett			
		Gong — Hammer			
		Gong — C			
		Ta	ıp		
		To vacuum			
		pump			
		When an electric bell inside a bell jar is switched on, a loud sound is			
		heard.			

(f)	Fringe separation $y = \frac{3.9 \times 10^{-3}}{23}$	
	$y = 1.70 \times 10^{-4} m$	
	$a = \frac{\lambda d}{v}$ where d is the distance from the slits, a is the slit separation	=
	l y	
	$a = \frac{5.5 \times 10^{-7} \times 0.31}{1.70 \times 10^{-4}}$	
	$a = 1.003 \times 10^{-3} m$	
7(a)(i)	Magnetic field strength is the force experienced by a straight	
	conductor of length 1m carrying a current of 1A when it is placed	
(ii)	perpendicular to a uniform magnetic field. Magnetic flux is the product of the magnetic flux density and the area	-
(22)	element perpendicular to the field at that point.	
(b) (i)		
	$F \vee F$	
(ii)	Magnetic field strength at P	
	From $B_{x} = \frac{\mu_0 I_{x}}{2\pi r_{px}}$	
	From $B_x = \frac{\mu_0 I_x}{2\pi r_{px}}$ $B_x = \frac{\mu_0 I_x}{2\pi r_{px}} = \frac{4\pi \times 10^{-7} \times 5}{2\pi \times 0.019} = 5 \cdot 2632 \times 10^{-5} T$	
	$\frac{D_x}{2\pi r_{px}} - \frac{1}{2\pi \times 0.019} = 5 \cdot 2632 \times 10^{-3} T$	
	$B_{y} = \frac{\mu_{0} I_{y}}{2\pi r_{py}} = \frac{4\pi \times 10^{-7} \times 9}{2\pi \times 0.009} = 2 \times 10^{-4} T$	
	$B_p = B_y - B_x$	
	$= 2 \times 10^{-4} - 5 \cdot 2632 \times 10^{-5}$	
(iii)	$= 1 \cdot 4737 \times 10^{-4}T$	
(***)	$F_{Px} = BxI_P L_p = \frac{\mu_0 I_x I_p L_p}{2\pi r_{px}}$	
	$=\frac{4\pi \times 10^{-7} \times 5 \times 3 \times 5}{2\pi \times 1.9 \times 10^{-2}}$	
	$= 7.8947 \times 10^{-4} N$ Attmostic	V
	$F_{Px} = B_X I_P L_P = \frac{\mu_0 I_y I_p L_p}{2\pi r_{py}}$	
	$= \frac{4\pi \times 10^{-7} \times 9 \times 3 \times 5}{2\pi \times 9 \times 10^{-3}}$	
	$= \frac{2\pi \times 9 \times 10^{-3}}{3 \times 10^{-3} N} Attractive$	
	$F_p = F_{py} - F_{px} = 3x10^{-3} - 7 \cdot 8947 \times 10^{-4}$	

	 The coil is again placed with its plane vertical and perpendicular to B_H as well as the magnetic meridian using a plotting compass needle. The coil is then rotated through 180° along the vertical axis and the deflection, θ_H of the B.G is noted. The B_H of the earth's magnetic field is then obtained from B_H =	
	$\theta = \tan^{-1} \left(\frac{\theta_v}{\theta_H} \right)$	
8 (a)(i)	Faraday's law states that the magnitude of emf in a coil is directly	
	proportional to the rate of change of magnetic flux linking it.	
	Lenz's law states that the induced current flows always in such a direction to oppose the change causing it.	
(ii)	• When the field is on, as the block oscillates it cuts the magnetic	
4.	field lines which results into changing magnetic flux and an emf is	
	induced in it creating eddy current to circulate with in the metal	
	The eddy current generates the magnetic field which opposes the	
	original field that causes the opposition to the motion of the metal	
	hence coming to rest in a short time	100
	When the field is off, there is no eddy currents generated which	
	results into the electromagnetic damping of the oscillation of the	
	metal. Its motion is only opposed by weaker mechanical friction	
	and air resistance with less impact hence oscillating for a longer ·	
	time.	

_		 	
((b)		

When the coil is rotated, the flux linkage starts to change and an emf

induced is given by; $E = -N \frac{d\emptyset}{dt}$(1)

And current that flows, $I = \frac{E}{R} = -\frac{N}{R} \frac{d\phi}{dt}$(2)

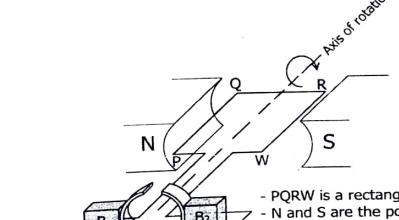
Since time is changing, $I = \frac{dQ}{dt}$(3)

Equating (2) and (3), $\frac{dQ}{dt} = -\frac{N}{R} \frac{d\emptyset}{dt}$

$$dQ = -\frac{N}{R} d\emptyset$$

$$\int_0^Q dQ = \int_{\emptyset I}^{\emptyset f} - \frac{N}{R} d\emptyset$$

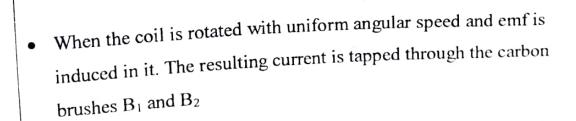
$$Q = -\frac{N}{R} (\emptyset_f - \emptyset_i)$$


But $\emptyset_f = BAcos180$ and $\emptyset_I = BAcos0$

$$Q = -\frac{N}{R} (BA\cos 180^{\circ} - BA\cos 0^{\circ})$$

$$Q = \frac{2NBA}{R}$$

Load



- PQRW is a rectangular coil.

 N and S are the poles of a permanent magnet.

- B₁ and B₂ are carbon brushes.

- S₁ and S₂ are commutators or split rings.

	 As side PQ moves up and RW down, an emf is induced in the coil 	
	in the direction PQRW. In the vertical position, emf induced is	
	zero.	
1	As PQ begins to move down and RW up, emf is induced in the	
	direction WRQP, so current reverses in the coil. But at the same	
	time commutators change contacts with the carbon brushes S ₁ to B ₂	
	and S_2 to B_1 .	
	Hence current continues flowing in the same direction in the load.	
(d)(i)	Back emf is an induced emf which opposes the applied voltage in the circuit.	
(ii)	Using $Va = E_b + Ir_a$	
	$220 = E_b + 1.5 \times 3$	
	$E_b = 215.5V$	
	But $E_b = BAN_{\phi}$	
	$\omega = \frac{215.5}{0.74 \times 12 \times 10^{-4} \times 100} = 2426.8 \ rads^{-1}$	
9(a)(i)	Self induction is the process of generating an emf in the coil due to	
	changing current in the same coil	
	Mutual induction is the process of generating an emf in the coil due to	
	changing current in the nearby coil.	
(ii)	When the switch is closed, current flows in the coil and a magnetic	
	field is established.	
	When it is opened, magnetic flux in the coil collapses creating an emf	
	which appears as a large p.d between the contact points of the switch.	
	3 per contact points of the switch	
	Since the contacts are very close, a high electric field intensity is	
	Since the contacts are very close, a high electric field intensity is created which ionizes the air between the contacts producing negative and positive ions that collide and neutralize violently causing a spark	

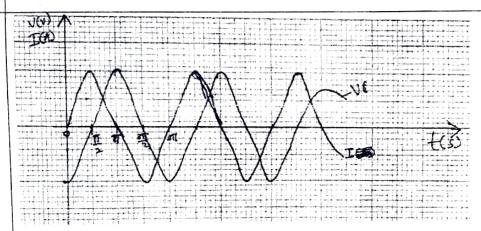
 $439.823 = I \times 1.5$

	I = 293.22A			
10 (a)	Impedance is the total opposition to the flow of a.c through a circuit			
	containing resistive and reactive components			
	Root mean square value of an alternating current is the value of direct			
,	(steady) current that dissipates energy (heat) in a given resistor at the same rate as the A.C.			
(b)(i)	Resonance is a condition when the total opposition to the flow of			
	alternating current flowing through a circuit containing resistive and			
	reactive components is minimum.			
	OR It is the condition when the alternating current flowing through a			
	circuit containing resistive and reactive components is maximum.			
ii)				
	Aerial Selection for amplification and transmission Earthing			
	 Radio waves from the different transmitting radio or T.V stations induce of different frequencies at the aerial coil, which in turn induce currents of same frequency in the inductor, L by mutual induction and connected in swith the variable air capacitor, C. By altering or tuning the variable air capacitor, C, the circuit is tuned to resonate with the frequency of the desired signal. At a particular frequency, it responds and stores a large amount of energy passes on to and fro between the electric field and magnetic fields of the inductor. The currents due to unwanted signals are negligibly small in comparison to desired values. At resonance, the impedance whose value Z = R is very smin comparison to X_L and X_C, thus making the circuit highly selective and cisignals are obtained. 	that the		

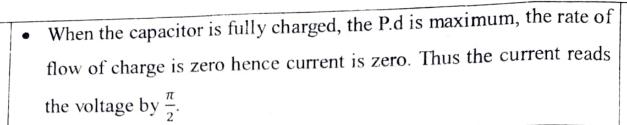
$$I = I_0 \sin \omega t$$

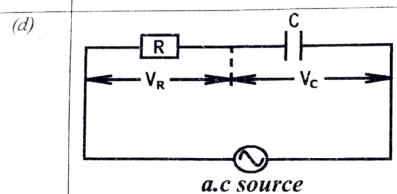
$$I = \frac{dQ}{dt} = \frac{dCV}{dt} = C\frac{dV}{dt}$$

$$dV = \frac{I}{C}dt$$


$$dV = \frac{I_0}{C} \sin \omega t dt$$

$$\int dV = \frac{I_0}{C} \int \sin \omega t dt$$


$$V = -\frac{I_0}{\omega C} \cos \omega t = -V_0 \cos \omega t$$


$$V = -V_0 \sin\left(\omega t + \frac{\pi}{2}\right)$$

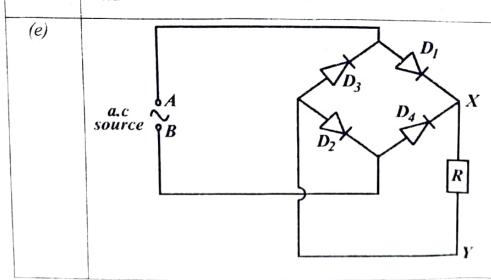
(ii)

- The current and voltage are out phase by a phase angle $\frac{\pi}{2}$, i.e the current leads voltage by $\frac{\pi}{2}$.
- When the P.d between the plates is minimum the current flowing is maximum because there is no charge on the plates to oppose the arrival of electrons.
- As the P.d increases the current flowing decreases because the already existing electrons oppose the arrival of more charges hence rate of flow of charge decreases.

$$C = 100 \mu \dot{F}, V_R = 2.5 V, I = 0.3 A, f = 50 Hz$$

For the lamp $V_R = IR \Rightarrow 2.5 = 0.3R$

$$R = 8.33\Omega$$

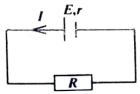

$$Z = \sqrt{R^2 + X_C^2} = \sqrt{8.33^2 + \left(\frac{1}{2\pi \times 50 \times 100 \times 10^{-6}}\right)^2}$$

$$Z = 32.902\Omega$$

$$V_{rms} = IZ$$

Since in series I is the same,

$$V_{rms} = 0.3 \times 32.902 = 9.87V$$



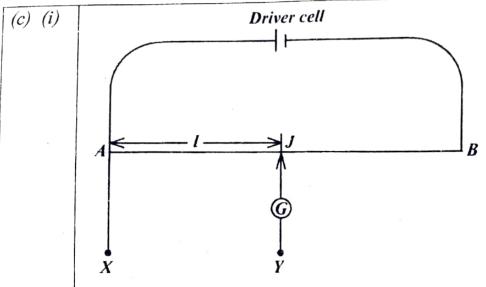
• In the first half cycle when A is positive relative to B diodes D ₁ and
D_2 are in forward bias and current flows through R in the direction
\underline{XY} , while D_3 and D_4 are reverse biased.

- In the next half cycle when B is positive relative to A, diodes D₃ and D₄ are forward biased and current flows through R in the direction XY again while D₁ and D₂ are reverse biased.
- During both cycles current is passed through the ammeter in one direction.
- 11 (a) **Resistivity** is the resistance between the opposite faces of a $1m^3$ of a material.

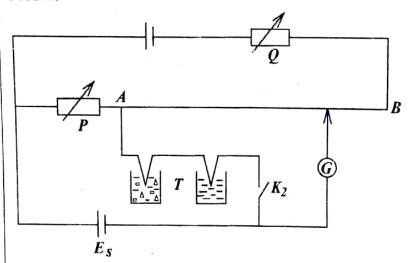
From
$$\rho = \frac{RA}{l} = \frac{\Omega m^2}{m} = \Omega m$$
. Thus its *S.I unit* is the Ωm

(b) Consider a resistor, R connected in series with a cell of emf, E and internal resistance, r

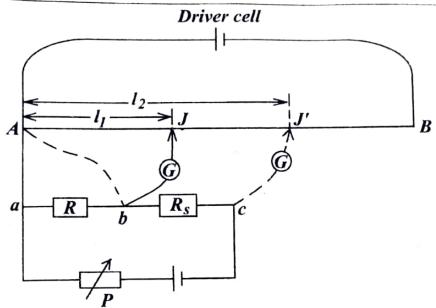
$$E = I(R+r)-----(1)$$


Power output, $P_{out} = I^2 R$

Power input, $P_{out} = IE$

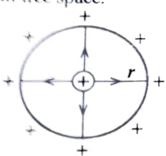

Efficiency,
$$\eta = \frac{P_{out}}{P_{in}} \times 100\% = \frac{I^2 R}{IE} \times 100\%$$

$$\eta = \frac{IR}{E} \times 100\% = \frac{IR}{I(R+r)} \times 100\%$$


$$\eta = \frac{R}{\left(R+r\right)} \times 100\%$$

- ✓ The driver cell maintains a steady current through slide wire.
- ✓ The slide wire has uniform resistance, hence the p.d per cm is uniform and any test p.d can be balanced across an appropriate length along the slide wire.
- (ii) By connecting a large resistance boxes in the driver circuit as shown below.

P and Q are connected to reduce current through the wire AB to a suitable small emf of the thermocouple to be balanced. Q also helps raise the p.d in this section to enable a balance point to be found for Es.


- ✓ The test resistor, \mathbf{R} and a standard resistor, \mathbf{R}_s are connected in series so that the same current passes through them as shown in the circuit above.
- ✓ With contacts at *a* and *b* the jockey J is tapped at different points along the slide wire *AB* until a point is reached when the galvanometer shows no deflection. The balance length, *I*₁ is measured and recorded.
- ✓ The galvanometer is then disconnected from **b** to **c** and **b** is connected directly to **A** as shown by the dotted lines in the diagram above.
- ✓ The jockey is again tapped along *AB* until a balance point is obtained. The new balance length, *I*² is measured and recorded.
- ✓ The unknown resistance, R is then calculated from $R = \left(\frac{l_1}{l_2}\right) R_s$

(e) (i)	$R_s = 10\Omega$
	$At \ 0^{\circ}C, \ l_1 = 40cm, l_2 = 60cm$
	At balance point, $\frac{R_0}{R_s} = \frac{l_1}{l_2} \Rightarrow R_0 = \frac{40}{60} \times 10 = \frac{20}{3} \Omega$
	$At \ 100^{\circ}C, \ l_{1} = 50cm, l_{2} = 50cm$
	$\frac{R_{100}}{R_s} = \frac{l_1}{l_2} \Longrightarrow R_{100} = \frac{50}{50} \times 10 = 10\Omega$
	$At \ \theta^{\circ}C, \ l_1 = 42cm, l_2 = 58cm$
	At θ °C, $l_1 = 42cm$, $l_2 = 58cm$ $\frac{R_{\theta}}{R_s} = \frac{l_1}{l_2} \Rightarrow R_{\theta} = \frac{42}{58} \times 10 = \frac{210}{29} \Omega$
1-1	From $R_{\theta} = R_0 (1 + \theta \alpha)$
8	$R_{\theta} = R_0 (1 + \theta \alpha) \Rightarrow \frac{210}{29} = \frac{20}{3} (1 + \theta \alpha) (1)$
	$R_{100} = R_0 (1 + 100\alpha)$
	$10 = \frac{20}{3} (1 + 100\alpha) \Longrightarrow \alpha = 5 \times 10^{-3} K^{-1}$
	From (1), $\theta = \frac{\left(\frac{210 \times 3}{29 \times 20} - 1\right)}{5 \times 10^{-3}}$ $\theta = 17.24^{\circ}C$
	$\theta = 17.24^{\circ}C$
(ii)	$\rho_{\theta} = \frac{R_{\theta}A}{l} = \frac{210}{29} \times \frac{2.5 \times 10^{-4} \times 10^{-4}}{1.5} = 1.207 \times 10^{-7} \Omega m$
<i>(f)</i>	Positive temperature coefficient of resistance.
	This will result into increase in resistance of the heating element due to increase in its temperature when current flows through it.
12(a)(i)	Action at a point is the apparent loss of charge at the sharp points of a charged conductor.
	The high charge density at sharp points causes high electric field
	intensity that ionizes surrounding air molecules. Ions of similar charge
	are repelled and ions of opposite charge are attracted hence
(ii)	neutralizing the charge on the conductor. When a negatively charged metal rod is placed on a neutral gold leaf,
	the leaf diverges because the electroscope gets charged by contact.
	When a sharp pin is placed on its cap with it's the sharp end facing
	away, the divergence of the leaf decreases with time. At the sharp
	point of the pin, there is a high charge density that causes a high electric field intensity that ionizes surrounding air molecules, the
	Page 46 of 54

positive ions are attracted to neutralize the negative charge on the electroscope hence the leaf falls

Gauss' law states that the total flux passing normally through an area is equal to the relation of the charge enclosed to the permittivity of the medium.

Assuming we consider a radius, r, concentric with a positive charge Q in free space.

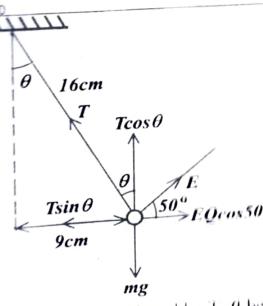
(b)(i)

(iii)

Electric field intensity on the surface of the sphere is given by

$$E = \frac{Q}{4\pi\varepsilon_0 r^2} \dots \dots \dots (i)$$

But $\phi = EA \dots \dots \dots \dots (ii)$


Substituting (i) into (ii)

$$\dot{\Phi} = \frac{Q}{4\pi\varepsilon_0 r^2} A$$

For a sphere, $A = 4\pi r^2$

$$\phi = (\frac{Q}{4\pi\varepsilon_0 r^2})4\pi r^2$$

$$\phi = \frac{Q}{\varepsilon_0}$$

Let the tension in the thread be T, 0 be the ample the string makes with

the vertical.

(i)

Resolving vertically, $T \cos \theta + E(\eta_0 m_0) = m_0$

 $T\cos\theta = mg - EQ\sin 50$

Page 4" of 14

$$But \theta = \sin^{-1}\left(\frac{\theta}{16}\right) = 34.24^{0}$$
Resolving horizontally,
$$T \sin \theta = EQ \cos 50 - - - - (ii)$$

$$(ii) \div (i)$$

$$T \sin \theta = EQ \cos 50$$

$$mg - EQ \sin 50$$

$$mg - EQ \sin 50$$

$$EQ \cos 50 = mg \tan 34.24$$

$$EQ \cos 50 + sin 50 \tan 34.24 = mg \tan 34.24$$

$$Q = \frac{mg \tan 34.24}{E(\cos 50 + \sin 50 \tan 34.24)}$$

$$Q = \frac{60 \times 10^{-3} \times 9.81 \tan 34.24}{E(\cos 50 + \sin 50 \tan 34.24)}$$

$$Q = \frac{60 \times 10^{-3} \times 9.81 \tan 34.24}{1.24 \times 10^{5} (\cos 50 + \sin 50 \tan 34.24)}$$

$$Q = 2.77 \times 10^{-6}C$$
(ii)

From (i)

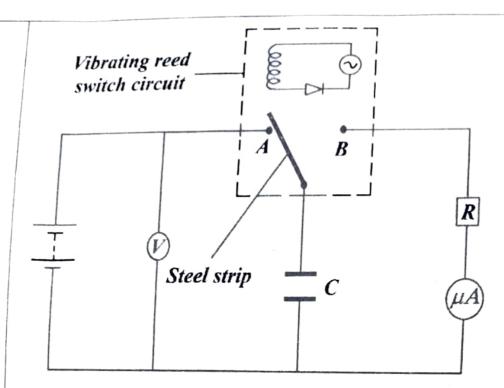
$$T \sin \theta = EQ \cos 50$$

$$T = \frac{1.24 \times 10^{5} \times 2.77 \times 10^{-6} \cos 50}{\sin 34.24}$$

$$T = 0.3924N$$
(d) (i)

Equipotential surface is surfaces is one in which the potential is the same at all points.
$$Examples include;$$
Any spherical shell concentric with a point charge.
The surface a charged conductor.

Suppose \vec{E} due to the charged surface makes an angle θ with the equipotential surface.


$$\vec{E}$$
The work done to move IC of a positive charge through a distance, x along the surface is;
$$Work = Force \times distance$$

$$W = Fx$$

	But $\vec{F} = \vec{E} \times 1 = \vec{E}$ where $Q = +1C$
	Along the surface, $\vec{E} = E \cos \theta$
	I Frank HV
	$\Rightarrow W = (E\cos\theta)x$ For an equipotential surface, Work, W=0
	$\Rightarrow Ex \cos \theta = 0$
	If $E \neq 0$ and $x \neq 0$, then, $\cos \theta = 0$
	$\Rightarrow \theta = \cos^{-1}(0)$
	$\therefore \theta = 90^{\circ}$
	Hence \vec{E} is perpendicular to the equipotential surface
13 (a)	Capacitance of a capacitor is the ratio of magnitude of charge on either
	plate of the capacitor to the potential difference between the plates.
	A farad is the capacitance of a capacitor when the magnitude of charge
	of 1C is stored on either plate and the p.d between the plates is 1V.
(b)(i)	Consider a battery with pd V, if it charges the capacitor to charge Q,
	then Energy symplical by the battern, E - VO
	Energy supplied by the battery $E = VQ$
	Heat disspated in the circuit
	energy supplied by the batteryenergy stored in the capacitor
	The small work δw done to move a small charge δq from one plate to
	another is given by $\delta w = V \delta q$
	The total work W done to charge the capacitor to Q from zero is given
	by.
	$W = \int_{C}^{Q} V dq = \int_{C}^{Q} \frac{Q}{c} dq$
	$\int_{0}^{\infty} c^{-\alpha q}$
	O^2
	$W = \frac{Q^2}{2C}$
	But $C = \frac{Q}{V}$
	W = QV
	The work done is stored as energy. Thus $E = QV$
	Energy stored in the capacitor $E_1 = \frac{QV}{2}$
	$Heat\ dissipated = E - E_1$
	Energy lost = $QV - \frac{QV}{2} = \frac{QV}{2}$
	2 2

	Heat dissipated = energy stored = $\frac{QV}{2}$
(b)(ii)	Consider a charge $+Q$ at a distance x from A in an electric field where electric field strength is E . $V + \delta V \qquad V \\ +Q - \frac{A}{\delta x} \qquad B \\ + E$
	Suppose the points A and B are so close a small distance δx apart such that the electric field intensity is constant. Work done to move a charge of $+1C$ from B to A is $W = (V + \delta V) - V = \delta V$
	Also Work, $W = E \times 1 \times (-\delta x) = -E \delta x$ $\Rightarrow W = -E \delta x$
	$E = -\frac{\delta V}{\delta x}$ Electric field intensity at any point is equal to the potential gradient at and near the point
(c)(i)	$A_{1} = \frac{\pi d^{2}}{4} = \frac{\pi \times (0.1)^{2}}{4} = 7.854 \times 10^{-3} m^{2}$ $A_{2} = \frac{\pi d^{2}}{4} = \frac{\pi \times (0.12)^{2}}{4} = 1.131 \times 10^{-2} m^{2}$ $C_{1} = \frac{A\varepsilon_{0}}{d} = \frac{7.854 \times 10^{-3} 8.85 \times 10^{-12}}{2.0 \times 10^{-3}} = 3.477 \times 10^{-11} F$
	$C_2 = \frac{A\varepsilon_0}{d} = \frac{1.131 \times 10^{-2} 8.85 \times 10^{-12}}{3.0 \times 10^{-3}} = 3.338 \times 10^{-11} F$ Effective capacitance $C = \frac{C_1 C_2}{c_1 + C_2} = \frac{3.477 \times 10^{-11} \times 3.338 \times 10^{-11}}{3.477 \times 10^{-11} + 3.338 \times 10^{-11}} = 1.705 \times 10^{-11} F$
(ii)	$C = 1.705 \times 10^{-11} F$ Energy stored in the system, $E = \frac{cv^2}{2} = \frac{120^2 1.705 \times 10^{-11}}{2}$ $E = 1.227 \times 10^{-7} J$

- The apparatus is set up as shown above.
- A capacitor with free space between its plates is connected at position C.
- The reed switch is then activated so that the capacitor alternately charges and discharges through a sensitive microammeter at a known frequency f of the low a.c supply energizing the reed switch.
- The voltmeter reading V and microammeter reading I_0 are noted.
- The dielectric whose relative permittivity is required is then inserted between the plates of the capacitor.
- Keeping the plate separation and area of overlap constant, the procedure is repeated and new microammeter reading I_I is recorded.
- The relative permittivity ε_r is determined from $\varepsilon_r = \frac{I_1}{I_1}$

(e) (i)

At equilibrium,

The sum of clockwise moments

= sum of anticlockwise moments

EQx = mgx

$$\frac{V}{d}CV = mg$$

$$\frac{CV^2}{d} = mg$$

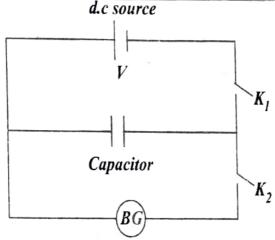
$$\frac{A\varepsilon_0}{d^2}V^2 = mg$$

$$\frac{120^{-4} \times 8.85 \times 10^{-12}}{0.4^2}V^2 = 2.66 \times 10^{-6} \times 9.81$$

$$V = 6.27kV$$

Charge density,
$$\delta = \frac{Q}{A}$$

$$\delta = \frac{cV}{A}$$


$$= \frac{A\varepsilon_0 V}{Ad} = \frac{\varepsilon_0 V}{d}$$

$$= \frac{8.85 \times 10^{-12} \times 6.27 \times 10^3}{0.4}$$

$$\delta = 1.387 \times 10^{-7} Cm^{-2}$$

14 (a) **Dielectric strength** is the maximum potential gradient a dielectric can withstand before it starts conducting.

(b)

- The circuit is connected as shown above
- A capacitor is connected to position C.
- With switch K₂ open, K₁ is closed and the capacitor charges fully to the p.d V of the source.
- Switch K₁ is opened and K₂ is closed and the capacitor discharges through the ballistic galvanometer.
- The maximum deflection θ_0 of the ballistic galvanometer is recorded.
- Keeping the plate separation constant, one of the plates is slightly displaced to reduce the effective area of overlap.
- The procedure is repeated and the new deflection θ_1 of the ballistic galvanometer is recorded.
- It is observed that θ₁ < θ₀ thus the capacitance of the capacitor reduces when the area of overlap is reduced.
 Hence C ∝ A.

	the a betterwand charged to a p.d V
(c)(i)	Consider a capacitor connected to a battery and charged to a p.d V
(0) (1)	The small work δw done to move a small charge δq from one plate to
	The small work ow done to move a small energy of
	another is given by $\delta w = V \delta q$
	another is given by ow - voq
	the conceptor to 1 15 El Vell

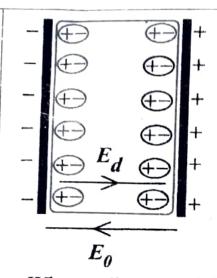
The total work W done to charge the capacitor to Q from zero is given by.

$$W = \int_{0}^{Q} V dq$$

$$W = \int_{0}^{Q} \frac{Q}{c} dq$$

$$W = \frac{Q^{2}}{2C}$$

The work done is stored as electrostatic energy between the plates of the capacitor.


Energy stored in the capacitor $E = \frac{Q^2}{2C}$

But
$$C = \frac{Q}{V}$$

$$E = \frac{Q^2}{2\left(\frac{Q}{V}\right)}$$

$$E = \frac{1}{2}QV$$

From $C_2 = \frac{A\varepsilon_0}{d}$, when the separation d is reduced, the capacitance C of the capacitor increases. Also $Energy E = \frac{CV^2}{2}$ thus $E \propto C$. Therefore, the energy reduces when the distance of separation reduces. This is because, when the capacitor is connected to the battery, the decrease in capacitance results in a decrease in the amount of charge stored by the capacitor since Q = CV and V is constant. This charge is returned to the battery thus a decrease in energy is as a result of the capacitor discharging.

- When a dielectric is inserted between the plates of the capacitor, the molecules of the capacitor get polarized forming positive charge near the negative plate and negative charge near the positive plate. These charges are bound charges so they can't be neutralized. This creates an electric field intensity E_d in a direction opposite to that of the applied electric field intensity E_0 .
- This reduces the electric field intensity $E = E_0 E_d$ between the plates of the capacitor.
- Since $E = \frac{V}{d}$, a reduction in E reduces the P.d, V between the plates.
- From $C = \frac{Q}{V}$, a decrease in V increases the capacitance of the capacitor. Hence presence of a dielectric increases capacitance of a capacitor.

(d) For
$$C_2$$
 and C_3 with a dielectric

$$C' = \frac{C_2 \varepsilon_r C_3}{C_2 + \varepsilon_r C_3} = \frac{3 \times 2.3 \times 3}{3 + 2.3 \times 3} = 2.091 \mu F$$

For C' and C_1

Total capacitance, $C = C' + C_1$

$$C = 3 + 2.091$$

$$C = 5.091 \mu F$$

Total charge, $Q = CV$

$$Q = 5.091 \times 60$$

$$Q = 305.46 \mu C$$

But $Q = k\theta$

$$305.46 = 4\theta$$

$$\theta = 76.365 \ divisions$$